Structure from Motion

Forschungsstelle Asia Minor

Möglichkeiten und Grenzen der virtuellen Flächen- und Bauaufnahme am Beispiel der Grabung auf dem Dülük Baba Tepesi (Südosttürkei)

1. Das Doliche-Projekt

Seit 2001 untersucht die Forschungsstelle Asia Minor, Universität Münster, den Gipfelbereich des Dülük Baba Tepes in der Nähe der Südosttürkischen Metropole Gaziantep. Durch die seitdem von einem internationalen Forscherteam durchgeführten archäologischen, geophysikalischen und vermessungstechnischen Arbeiten konnte die Existenz des Hauptheiligtums des luppiter Dolichenus auf die sem Berg zweifelsfrei nachgewiesen werden. Dies belegen neben den bislang entdeckten umfangreichen baulichen Strukturen römischer Zeit, die dem Heiligtum zugeordnet werden können, Weihungen an „, den erhörenden Gott von Doliche" in griechischer und lateinischer Sprache und auch Darstellungen des Iuppiter Dolichenus.

Unerwartet reiche Funde aus römischer Zeit wie vor allem auch aus früheren Epochen erlauben es, sowohl unser Wissen über den Kult des luppiter Dolichenus als auch über die Frühgeschichte des Kultplatzes zu erweitern. He vorzuheben sind viele hundert Perlen, Roll- und Stempelsiegel, die mehrheitlich aus dem 6.15 . Jh. v. Chr stammen Es handelt sich beim Dülük Baba Tepesi offensichtlich um einen der wenigen Orte im südostanatolischen Raum, an dem sich Kulthandlungen vom frühen 1. Jt. v. Chr. bis in die christlich geprägte Spätantike hinein kontinuierlich nachweisen lassen.

Dass unterhalb des hellenistischen Horizonts noch Zeugnisse früherer Phasen des Heiligtums anzutreffen sind, ist sicherlich ein Glücksfall nicht nur für die Erforschung des Heiligtums eines der wichtigsten Götter des römischen Imperiums, sondern auch allgemein für Fragen zur Kultkontinuität und Religionsgeschichte des gesamten antiken Vorderen Orients.

2. Bisherige Dokumentation

Seit 2004 ist das Grabungsgelände in ein georeferenziertes Rastersystem unterteilt und wird seither tachymetrisch aufge messen. Somit ist es möglich, Funde und Befunde genau zu lo kalisieren und mittels CAD-Software in einem Gesamtplan des Grabungsareals darzustellen. Durch die Verknüpfung des Gesamtplans mit der Grabungsdatenbank, sind die Ergebnisse der Vermessung für jeden Arbeitsbereich und für jedes Teilprojekt der Grabung unmittelbar verfügbar.

Die Vermessungsarbeiten dienen somit der genaueren Doku mentation der Grabung und der anschließenden Auswertung. So können beispielsweise mittels der Fundkartierung wichtige Aussagen über die Fundverteilung und somit über die unterschiedlichen Ausbau phasen des Heiligtums getroffen werden. In Kombination mit den Erkenntnissen der Bauforschung kann so ein Phasenplan erstellt werden.

Bis 2012 wurden die Endplana ausschließlich mittels Handauf maß in Kombination mit tachymetrischen Daten im Maßstab von 1:20 aufgenommen. Eine-wie jeder Feldarchäologe weiß- sehr wichtige aber eben auch zeit- und arbeitsaufwändige Aufgabe

- 2012 wurde in ausge wählten Teilbereichen das Structure-From-Motion-Verfahren mithilfe von open-sourcesoftware (123D-Catch Virtrual SfM) getestet, um die üblichen Dokuverfahren ohne Qualitätsverlust zu beschleunigen. Die Ergebnisse waren hierbei so überzeugend, dass man für die Kampagne 2013 auf eine kommerzielle Lösung umstieg (Agisoft Photoscan) und die Erstellung von georeferenzierten 3D-Modellen und Orthophotos s mit zum festen Bestandteil der Dokumentation von Bodenbefunden wurde

3. Flächen- und Bauaufnahme unter Anwendung der structure-from-motion-Methode (SfM)

Die zweite Serie von Bildern wird ebenfalls von der Schnittkante aus angefertigt und zwar so, dass die volle Breite des Schnittes erfasst wird. Anschließend werden die Befunde innerhalb des Areals umrundet und im Detail fotografiert. Mauern

Es hat sich gereigt, dass für ein Areal von $25 \mathrm{~m}^{2}$ ca. 100-130 Fotos benötigt werden. Für die Anzah der Fotos gilt: je mehr desto besser, jedoch muss beachtet werden, dass aufgrund des Arbeitsprozesses der Software mit jedem Foto die Rechendaue exponentiell steigt. Für ein Modell mit rund 100 Fotos benötigt der von uns verwendete Rechner ca, 2 Stunden (mehr Infos zur Hardware uber den QR-Code abrubar). Bei Flachen von mehr als $25 \mathrm{~m}^{2}$ wurde das Areal daher in mehrere Abschnitte und soi frit in unterschiedliche Modelle euntertellt.

Die Bilder werden nun von Photoscan in drei A Arbeitsschritten (Fotos ausrichten, interschiedliche Einstell ingen unterschiedliche Einstelliungen vorzunehmen. Fur unser Projekt galt hier, „learning by doing" (weitere Informationen sind über den $Q R$-Code abrufbar):
st, das Modell fertig gerechnet, können über die „Verortung" Marke gesetzt werden. Diese entsprechen natürlich den zuvor tachymetrisch eingemessenen Punkten. Es erwies sich als äußerst hilfreich, verschiedenfarbige und durchnummerierte Messpunkte zu verwenden. Anschließend kann die Liste der zugehörigen Koordinaten eingelesen werden. Die Software orientiert das Modell dann anhand der Messpunkte. Abweichungen werden kenntlich gemacht und können entweder manuell korrigiert oder - sollte evtl. ein Messfehler vorliegen entweder manue

Abschließend wird das Modell in exakter Draufsicht als georeferenziertes Orthofoto exportiert (als GeoTIFF, JPEG oder PNG) und zur Weiterverarbeitung in AutoCAD importiert. Dort kann der zu Weiterverarbeitung in AutoCAD importiert. Dort kann der zu
dokumentierende Bereich im beliebigen Maßstab geplottet und der so entstandene Planausschnitt zur weiteren Dokuarbeit an den Schnitt ausgegeben werden, wo das Orthofoto als Zeichengrundlage dient. Die Dokuarbeiten am Schnitt können so entscheidend beschleunigt werden, ohne dass die Qualität der Dokumentation leidet.
Es ist zu beobachten, dass durch eine Kombination von Schräg- und Copterbildern die besten Ergebnisse erzielt werden.
 sollten in der Ansicht und der Draufsicht fotografiert werden.

4. Ergebnisse

Die Zeit für die Dokumentation von Flächen kann teilweise halbiert werden
Im Schnitt bleiben die Abweichungen unter 2 cm
Ein Vergleich zwischen „traditioneller" Bauaufnahme und SfM zeigt, dass hier die Ergebnisse um max. $0,9 \mathrm{~cm}$ abweichen Die 3D-Modelle können für die weitere Visualisierung von Grabungsergebnissen verwendet werden Relativ geringe Kosten

Teilweise sehr lange Rechenzeiten Das konkrete Ergebnis ist nicht immer vorhersehbar (Übung macht den Meister!)

EmpFohlene Einstelungen
\qquad werden konnten

